Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38300904

RESUMO

In the Northern Great Plains, cattle may be exposed to water with an elevated sulfate concentration resulting in ruminal hydrogen sulfide (H2S) production and risk of copper deficiency. There are currently few strategies available to help mitigate effects arising from high-sulfate water (HS). The objective of this study was to evaluate the effects of feeding a moderate-forage diet with or without bismuth subsalicylate (BSS; 0.0% vs. 0.4% DM basis) when provided water with a low- (LS; 346 ±â€…13) or HS (4,778 ±â€…263 mg/L) concentration on feed and water intake, ruminal H2S concentration, and liver and serum trace-mineral concentrations. Twenty-four Limousin × Simmental cross beef heifers (221 ±â€…41 kg) were stratified based on initial liver Cu into a completely randomized block design with a 2 × 2 factorial treatment arrangement. Feed and water intake (measured weekly), ruminal H2S concentration (measured on days 42 and 91), liver (measured on days -13 and 91), and serum trace-mineral concentrations (measured on days 1, 28, 56, and 91) were evaluated. Initial liver trace-mineral concentrations were used as a covariate in the statistical model. Water intake tended to be reduced with the inclusion of BSS (P = 0.095) but was not affected by water sulfate (P = 0.40). Water sulfate and BSS did not affect dry matter intake (DMI; P ≥ 0.89). Heifers consuming HS had a ruminal H2S concentration that was 1.58 mg/L more (P < 0.001) than LS. The inclusion of BSS reduced (P = 0.035) ruminal H2S concentration by more than 44% (1.35 vs. 0.75 mg/L). Regardless of the water sulfate concentration, heifers fed BSS had lesser liver Cu concentration (average of 4.08 mg/kg) than heifers not provided BSS, and when not provided BSS, HS had lesser Cu than LS (42.2 vs. 58.3; sulfate × BSS, P = 0.019). The serum concentration of Cu did not differ over time for heifers not provided BSS; whereas, heifers provided BSS had lesser serum Cu concentration on day 91 than on days 28 and 55 (BSS × time, P < 0.001). The liver concentration of selenium was reduced (P < 0.001) with BSS inclusion but the selenium concentration in serum was not affected by sulfate, BSS, or time (P ≥ 0.16). BSS reduced ruminal H2S concentration, but depleted liver Cu and Se. Moreover, sulfate concentration in water did not appear to affect DMI, water intake, or growth, but increased ruminal H2S and reduced liver Cu concentration.


Water containing a high concentration of sulfate increases the risk of hydrogen sulfide production in the rumen and consequently of polioencephalomalacia. In addition, water with a high-sulfate concentration may induce copper deficiency indicated by depleted liver copper concentration. Bismuth subsalicylate (BSS) can bind to sulfides and may reduce the risk of hydrogen sulfide production and therefore may mitigate risks associated with high-sulfate water. In this study, the effects of water sulfate concentrations (346 ±â€…13 vs. 4,778 ±â€…263 mg/L) were tested along with 0.0% vs. 0.4% of dietary BSS. Water intake tended to be reduced with the inclusion of BSS but was not affected by water sulfate. Water sulfate concentration and BSS did not affect dry matter intake (DMI). Heifers consuming high-sulfate water (HS) had a ruminal H2S concentration that was 1.58 mg/L more than low-sulfate water (LS). The inclusion of BSS reduced ruminal H2S concentration by 44% (1.35 vs. 0.75 mg/L). Regardless of the water sulfate concentration, heifers fed BSS had lesser liver Cu concentration than heifers not provided BSS, and when not provided BSS, HS had lesser Cu than LS. BSS reduced ruminal hydrogen sulfide concentration but depleted liver Cu. Sulfate concentration in water did not affect DMI, water intake, or growth, but increased ruminal hydrogen sulfide concentration and reduced liver Cu concentration.


Assuntos
Bismuto , Sulfeto de Hidrogênio , Compostos Organometálicos , Salicilatos , Selênio , Oligoelementos , Bovinos , Animais , Feminino , Sulfeto de Hidrogênio/metabolismo , Oligoelementos/farmacologia , Cobre/farmacologia , Cobre/metabolismo , Sulfatos/metabolismo , Ingestão de Líquidos , Selênio/farmacologia , Rúmen/metabolismo , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais , Digestão , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...